1,546 research outputs found

    PHP89 Korean Recommendations on Health Economic Evaluation (2nd and Updated Version)

    Get PDF

    Nonequilibrium coupled Brownian phase oscillators

    Full text link
    A model of globally coupled phase oscillators under equilibrium (driven by Gaussian white noise) and nonequilibrium (driven by symmetric dichotomic fluctuations) is studied. For the equilibrium system, the mean-field state equation takes a simple form and the stability of its solution is examined in the full space of order parameters. For the nonequilbrium system, various asymptotic regimes are obtained in a closed analytical form. In a general case, the corresponding master equations are solved numerically. Moreover, the Monte-Carlo simulations of the coupled set of Langevin equations of motion is performed. The phase diagram of the nonequilibrium system is presented. For the long time limit, we have found four regimes. Three of them can be obtained from the mean-field theory. One of them, the oscillating regime, cannot be predicted by the mean-field method and has been detected in the Monte-Carlo numerical experiments.Comment: 9 pages 8 figure

    Neutron beam test of CsI crystal for dark matter search

    Full text link
    We have studied the response of Tl-doped and Na-doped CsI crystals to nuclear recoils and γ\gamma's below 10 keV. The response of CsI crystals to nuclear recoil was studied with mono-energetic neutrons produced by the 3^3H(p,n)3^3He reaction. This was compared to the response to Compton electrons scattered by 662 keV γ\gamma-ray. Pulse shape discrimination between the response to these γ\gamma's and nuclear recoils was studied, and quality factors were estimated. The quenching factors for nuclear recoils were derived for both CsI(Na) and CsI(Tl) crystals.Comment: 21pages, 14figures, submitted to NIM

    Epitaxially strained [001]-(PbTiO3_3)1_1(PbZrO3_3)1_1 superlattice and PbTiO3_3 from first principles

    Full text link
    The effect of layer-by-layer heterostructuring and epitaxial strain on lattice instabilities and related ferroelectric properties is investigated from first principles for the [001]-(PbTiO3_3)1_1(PbZrO3_3)1_1 superlattice and pure PbTiO3_3 on a cubic substrate. The results for the superlattice show an enhancement of the stability of the monoclinic r-phase with respect to pure PbTiO3_3. Analysis of the lattice instabilities of the relaxed centrosymmetric reference structure computed within density functional perturbation theory suggests that this results from the presence of two unstable zone-center modes, one confined in the PbTiO3_3 layer and one in the PbZrO3_3 layer, which produce in-plane and normal components of the polarization, respectively. The zero-temperature dielectric response is computed and shown to be enhanced not only near the phase boundaries, but throughout the r-phase. Analysis of the analogous calculation for pure PbTiO3_3 is consistent with this interpretation, and suggests useful approaches to engineering the dielectric properties of artificially structured perovskite oxides.Comment: 8 pages, 5 figure

    High-pressure effects on structural, magnetic, and vibrational properties of van der Waals antiferromagnet MnPS₃

    Get PDF
    The crystal structure, vibrational spectra, and magnetic structure of quasi-two-dimensional layered van der Waals material MnPS3 were studied using x-ray diffraction and Raman spectroscopy at high pressures up to 28 GPa, and neutron diffraction up to 3.6 GPa, respectively. A structural phase transition between two monoclinic modifications of the same C2/m symmetry was observed, evolving gradually in the pressure range of about 1–6 GPa. The transition is accompanied by abrupt shortening of lattice parameters, significant reduction of the monoclinic distortion, and anomalies in the pressure behavior of several Raman-mode frequencies. No more structural phase transitions were revealed in the studied pressure range. The antiferromagnetic (AFM) state with a propagation vector k= (0, 0, 0) remains stable in ambient pressure and high-pressure structural phases of MnPS3 at least up to 3.6 GPa. The Néel temperature increases noticeably with a pressure coefficient of dTN/dP=6.7 K/GPa, leading to modification of the dominant first-neighbor magnetic interaction exchange parameter with a relevant coefficient dJ1/dP≈−0.6 meV/GPa. This observation is in contrast to the pressure behavior of FePS3, demonstrating modification of the AFM state from 2D-like to 3D-like at the similar pressure-induced structural phase transition. The different pressure response of the magnetic states of MnPS3 and FePS3 is analyzed in terms of competing in-plane and interplane magnetic interactions

    Integrating wild and agrobiodiversity conservation

    Get PDF
    This research shows that both wild biodiversity and agrobiodiversity provide multiple ecosystem services that support food production, underpin food security and human wellbeing. We consider that biodiversity conservation efforts in agricultural contexts should better integrate wild and agrobiodiversity approache

    Lattice instabilities of PbZrO3/PbTiO3 [1:1] superlattices from first principles

    Full text link
    Ab initio phonon calculations for the nonpolar reference structures of the (001), (110), and (111) PbZrO_3/PbTiO_3 [1:1] superlattices are presented. The unstable polar modes in the tetragonal (001) and (110) structures are confined in either the Ti- or the Zr-centered layers and display two-mode behavior, while in the cubic (111) case one-mode behavior is observed. Instabilities with pure oxygen character are observed in all three structures. The implications for the ferroelectric behavior and related properties are discussed.Comment: 12 pages, 2 figures, 7 tables, submitted to PR

    Anomalous Dynamics of Forced Translocation

    Full text link
    We consider the passage of long polymers of length N through a hole in a membrane. If the process is slow, it is in principle possible to focus on the dynamics of the number of monomers s on one side of the membrane, assuming that the two segments are in equilibrium. The dynamics of s(t) in such a limit would be diffusive, with a mean translocation time scaling as N^2 in the absence of a force, and proportional to N when a force is applied. We demonstrate that the assumption of equilibrium must break down for sufficiently long polymers (more easily when forced), and provide lower bounds for the translocation time by comparison to unimpeded motion of the polymer. These lower bounds exceed the time scales calculated on the basis of equilibrium, and point to anomalous (sub-diffusive) character of translocation dynamics. This is explicitly verified by numerical simulations of the unforced translocation of a self-avoiding polymer. Forced translocation times are shown to strongly depend on the method by which the force is applied. In particular, pulling the polymer by the end leads to much longer times than when a chemical potential difference is applied across the membrane. The bounds in these cases grow as N^2 and N^{1+\nu}, respectively, where \nu is the exponent that relates the scaling of the radius of gyration to N. Our simulations demonstrate that the actual translocation times scale in the same manner as the bounds, although influenced by strong finite size effects which persist even for the longest polymers that we considered (N=512).Comment: 13 pages, RevTeX4, 16 eps figure

    Existence of superposition solutions for pulse propagation in nonlinear resonant media

    Get PDF
    Existence of self-similar, superposed pulse-train solutions of the nonlinear, coupled Maxwell-Schr\"odinger equations, with the frequencies controlled by the oscillator strengths of the transitions, is established. Some of these excitations are specific to the resonant media, with energy levels in the configurations of Λ\Lambda and NN and arise because of the interference effects of cnoidal waves, as evidenced from some recently discovered identities involving the Jacobian elliptic functions. Interestingly, these excitations also admit a dual interpretation as single pulse-trains, with widely different amplitudes, which can lead to substantially different field intensities and population densities in different atomic levels.Comment: 11 Pages, 6 Figures, presentation changed and 3 figures adde

    Higher Grading Conformal Affine Toda Teory and (Generalized) Sine-Gordon/Massive Thirring Duality

    Full text link
    Some properties of the higher grading integrable generalizations of the conformal affine Toda systems are studied. The fields associated to the non-zero grade generators are Dirac spinors. The effective action is written in terms of the Wess-Zumino-Novikov-Witten (WZNW) action associated to an affine Lie algebra, and an off-critical theory is obtained as the result of the spontaneous breakdown of the conformal symmetry. Moreover, the off-critical theory presents a remarkable equivalence between the Noether and topological currents of the model. Related to the off-critical model we define a real and local Lagrangian provided some reality conditions are imposed on the fields of the model. This real action model is expected to describe the soliton sector of the original model, and turns out to be the master action from which we uncover the weak-strong phases described by (generalized) massive Thirring and sine-Gordon type models, respectively. The case of any (untwisted) affine Lie algebra furnished with the principal gradation is studied in some detail. The example of sl^(n)(n=2,3)\hat{sl}(n) (n=2,3) is presented explicitly.Comment: 28 pages, JHEP styl
    corecore